- leere Teilmenge
- пустое подмножество
Немецко-русский математический словарь. 2013.
Немецко-русский математический словарь. 2013.
Leere Menge — { } ∅ Die leere Menge ist ein grundlegender Begriff aus der Mengenlehre. Man bezeichnet damit die Menge, die keinerlei Elemente enthält. Da Mengen über ihre Elemente charakterisiert werden und zwei Mengen genau dann gleich sind, wenn sie… … Deutsch Wikipedia
Leere Sprache — Die Artikel Formale Sprache, Formales System, Formales System (Logik) und Kalkül überschneiden sich thematisch. Hilf mit, die Artikel besser voneinander abzugrenzen oder zu vereinigen. Beteilige dich dazu an der Diskussion über diese… … Deutsch Wikipedia
Teilmenge — Mengendiagramm: A ist eine (echte) Teilmenge von B. Die mathematischen Begriffe Obermenge und Teilmenge beschreiben eine Beziehung zwischen zwei Mengen. Ein anderes Wort für Teilmenge ist Untermenge. Für die mathematische Abbildung der Einbettung … Deutsch Wikipedia
Konvexe Teilmenge — eine konvexe Menge eine nichtkonvexe Menge In der Mathematik heißt eine geometrische Figur oder allgemeiner eine Teilmenge eines … Deutsch Wikipedia
Offene Teilmenge — In dem Teilgebiet Topologie der Mathematik ist eine offene Menge eine Menge mit einer genau definierten Eigenschaft (siehe unten). Anschaulich ist eine Menge offen, wenn ihre Elemente nur von Elementen dieser Menge umgeben sind, mit anderen… … Deutsch Wikipedia
Echte Teilmenge — Euler Diagramm: A ist eine (echte) Teilmenge von B Der mathematische Begriff Teilmenge (oder auch Untermenge) bedeutet eine Beziehung zwischen Mengen. A ist eine Teilmenge von B, wenn jedes Element von A auch in B enthalten ist. Man nennt B dann… … Deutsch Wikipedia
Limeszahl — Beim Zählen benutzt man Ordinalzahlen (auch Ordnungszahlen genannt), um die Position eines Elements in einer Folge anzugeben: „Erstes, zweites, drittes, … Element“. Sprachlich benutzt man dazu bestimmte Zahlwörter. Auf diese Weise ordnet man… … Deutsch Wikipedia
Ordinalzahlen — Beim Zählen benutzt man Ordinalzahlen (auch Ordnungszahlen genannt), um die Position eines Elements in einer Folge anzugeben: „Erstes, zweites, drittes, … Element“. Sprachlich benutzt man dazu bestimmte Zahlwörter. Auf diese Weise ordnet man… … Deutsch Wikipedia
Ordnungsisomorphie — Beim Zählen benutzt man Ordinalzahlen (auch Ordnungszahlen genannt), um die Position eines Elements in einer Folge anzugeben: „Erstes, zweites, drittes, … Element“. Sprachlich benutzt man dazu bestimmte Zahlwörter. Auf diese Weise ordnet man… … Deutsch Wikipedia
Ordnungsisomorphismus — Beim Zählen benutzt man Ordinalzahlen (auch Ordnungszahlen genannt), um die Position eines Elements in einer Folge anzugeben: „Erstes, zweites, drittes, … Element“. Sprachlich benutzt man dazu bestimmte Zahlwörter. Auf diese Weise ordnet man… … Deutsch Wikipedia
Ordinalzahl — Beim Zählen benutzt man Ordinalzahlen (auch Ordnungszahlen genannt), um die Position eines Elements in einer Folge anzugeben: „Erstes, zweites, drittes, … Element“. Sprachlich benutzt man dazu bestimmte Zahlwörter. Auf diese Weise ordnet man… … Deutsch Wikipedia